
AEC, Dept. of IT Page 48

UNIT - III

AEC, Dept. of IT Page 49

UNIT-III

BOTTOM UP PARSING

1. BOTTOM UP PARSING:

Bottom-up parser builds a derivation by working from the input sentence back towards the start
symbol S. Right most derivation in reverse order is done in bottom-up parsing.

(The point of parsing is to construct a derivation. A derivation consists of a series of rewrite steps)

S r0 r1 r2 - - - rn-1 rn sentence

Bottom-up

Assuming the production A , to reduce ri ri-1 match some RHS against ri then replace with its
corresponding LHS, A.

In terms of the parse tree, this is working from leaves to root.

Example 1:

S if E then S else S/while E do S/ print

E true/ False/id

Input: if id then while true do print else print.

Parse tree:

Basic idea: Given input string a, it to the goal (start) symbol, by looking for

substring that match production RHS.

S

if then S Clse S

 I

 While E do S Pri
S

 I I

 tru

AEC, Dept. of IT Page 50

 if E then S else S
lm

 if id then S else S
lm

 if id then while E do S else S
lm

 if id then while true do S else S
lm

 if id then while true do print else S
lm

 if id then while true do print else print
lm

 if E then while true do print else print
rm

 if E then while E do print else print
rm

 if E then while E do S else print
rm

 if E then S else print
rm

 if E then S else S
rm

 S
rm

1.1 Topdown Vs Bottom-up parsing:

Top-down Bottom-up

1. Construct tree from root to leaves 1. Construct tree from leaves to root

2. which RHS to substitute for 2. which rule to

nonterminal terminals

3. Produces left-most derivation 3. Produces reverse right-most derivation.

4. Recursive descent, LL parsers 4. Shift-reduce, LR, LALR, etc.

5. Recursive descent, LL parsers 5. for humans.

6. Easy for humans

AEC, Dept. of IT Page 51

 Bottom-up can parse a larger set of languages than topdown.

 Both work for most (but not all) features of most computer languages.

Example 2:

Right-most derivation

S aAcBe llp: abbcde/ S aAcBe

A Ab/b aAcde

B d aAbcde

 abbcde

Bottom-up approach

 sentential Reduction

abbcde

aAbcde A b

Aacde A Ab

AacBe B d

S S aAcBe

Steps correspond to a right-most derivation in reverse.

(must choose RHS wisely)

Example 3:

S aABe

A Abc/b

B d

1/p: abbcde

Right most derivation:

aABe

aAde Since () B d

aAbcde Since () A Abc

abbcde Since () A b

AEC, Dept. of IT Page 52

Parsing using Bottom-up approach:

Input Production used

abbcde

aAbcde A b

AAde A Abc

AABe B d

S parsing is completed as we got a start symbol

Hence the 1/p string is acceptable.

Example 4

E E+E

E E*E

E (E)

E id

1/p: id1+id2+id3

Right most derivation

E E+E

E+E*E

E+E*id3 E+id2*id3

id1+id2*id3

Parsing using Bottom-up approach:

Go from left to right

id1+id2*id3

E+id2*id3

E+E*id3

E*id3

E*E
E

E id

E id
E E+E
E id

= start symbol, Hence acceptable.

AEC, Dept. of IT Page 53

2. HANDLES:

Always making progress by replacing a substring with LHS of a matching production will not lead to
the goal/start symbol.

For example:

abbcde

aAbcde A b

aAAcde A b

struck

Informally, A Handle of a string is a substring that matches the right side of a production, and whose
reduction to the non-terminal on the left side of the production represents one step along the reverse
of a right most derivation.

If the grammar is unambiguous, every right sentential form has exactly one handle.

More formally, A handle is a production A and a position in the current right-sentential form
 such that:

S A /

For example grammar, if current right-sentential form is

a/Abcde

Then the handle is A Ab at the marked position. contains non-terminals.

2.1 HANDLE PRUNING:

Keep removing handles, replacing them with corresponding LHS of production, until we reach S.

Example:

E E+E/E*E/(E)/id

Right-sentential form Handle Reducing production

a+b*c a E id

E+b*c b E id

AEC, Dept. of IT Page 54

E+E*C C E id

E+E*E E*E E E*E

E+E E+E E E+E

E

The grammar is ambiguous, so there are actually two handles at next-to-last step. We can use

parser-generators that compute the handles for us.

3. SHIFT- REDUCE PARSING:

Shift Reduce Parsing uses a stuck to hold grammar symbols and input buffer to hold string to be

the state.

A shift-reduce parser has just four actions:

1. Shift-next word is shifted onto the stack (input symbols) until a handle is formed.

2. Reduce right end of handle is at top of stack, locate left end of handle within the stack. Pop

handle off stack and push appropriate LHS.

3. Accept stop parsing on successful completion of parse and report success.

4. Error call an error reporting/recovery routine.

3.1 Possible Conflicts:

Ambiguous grammars lead to parsing conflicts.

1. Shift-reduce: Both a shift action and a reduce action are possible in the same state (should we

shift or reduce)

Example: dangling-else problem

2. Reduce-reduce: Two or more distinct reduce actions are possible in the same state. (Which

production should we reduce with 2).

AEC, Dept. of IT Page 55

Example:

Stmt id (param) (a(i) is procedure call)

Param id

Expr id (expr) /id (a(i) is array subscript)

Stack input buffer action

 (i Reduce by ?

Should we reduce to param or to expr? Need to know the type of a: is it an array or a function. This

information must flow from declaration of a to this use, typically via a symbol table.

3.2 Shift reduce parsing example: (Stack implementation)

Grammar: E E+E/E*E/(E)/id Input: id1+id2+id3

One Scheme to implement a handle-pruning, bottom-up parser is called a shift-reduce parser. Shift

reduce parsers use stack and an input buffer.

The sequence of steps is as follows:

1. initialize stack with $.
2. Repeat until the top of the stack is the goal symbol and the input token is of a. Find

the handle

If we have a handle on top of stack, shift an input symbol onto the stack.

b. Prune the handle

if we have a handle (A) on the stack, reduce

(i) pop / / symbols off the stack (ii)push A onto the stack.

Stack input Action

$ id1+id2*id3$ Shift

$ id1 +id2*id3$ Reduce by E id

$E +id2*id3$ Shift

$E+ id2*id3$ Shift

$E+ id2 *id3$ Reduce by E id

AEC, Dept. of IT Page 56

$E+E *id3$ Shift

$E+E* id3$ Shift

$E+E* id3 $ Reduce by E id

$E+E*E $ Reduce by E E*E

$E+E $ Reduce by E E+E

$E $ Accept

Example 2:

Goal

Expr

Expr

Expr + term | Expr Term | Term

Term

Tem & Factor | Term | factor | Factor

Factor

number | id | (Expr)

The expression grammar : x z * y

Stack Input Action

$ Id - num * id Shift

$ id - num * id Reduce factor id

$ Factor - num * id Reduce Term Factor

$ Term - num * id Reduce Expr Term

$ Expr - num * id Shift

$ Expr - num * id Shift

$ Expr num * id Reduce Factor num

$ Expr Factor * id Reduce Term Factor

$ Expr Term * id Shift

$ Expr Term * id Shift

AEC, Dept. of IT Page 57

$ Expr Term * id

Reduce Factor id

$ Expr Term & Factor

Reduce Term Term * Factor

$ Expr Term

Reduce Expr Expr Term

$ Expr

Reduce Goal Expr

$ Goal Accept

1. shift until the top of the stack is the right end of a handle
2. Find the left end of the handle & reduce.

Procedure:

1. Shift until top of stack is the right end of a handle.

2. Find the left end of the handle and reduce.

* Dangling-else problem:

stmt if expr then stmt/if expr then stmt/other then example string is: if E1 then if E2 then S1 else S2

has two parse trees (ambiguity) and so this grammar is not of LR(k) type.

Stmt

If expr then stmt

E if expr then stmt else stmt.

 Stmt

If

expr

then

stmt else

stmt

 EI if expr then stmt S2

E2

S1

AEC, Dept. of IT Page 58

3. OPERATOR PRECEDENCE PARSING:

Precedence/ Operator grammar: The grammars having the property:

1. No production right side is should contain .
2. No production sight side should contain two adjacent non-terminals.

Is called an operator grammar.

Operator precedence parsing has three disjoint precedence relations, <.,=and .> between certain

pairs of terminals. These precedence relations guide the selection of handles and have the following

meanings:

RELATION MEANING

a<.b yields precedence to

a=b has the same precedence

a.>b takes precedence

Operator precedence parsing has a number of disadvantages:

1. It is hard to handle tokens like the minus sign, which has two different precedences.
2. Only a small class of grammars can be parsed.
3. The relationship between a grammar for the language being parsed and the operator-

precedence parser itself is tenuous, one cannot always be sure the parser accepts exactly the
desired language.

Disadvantages:

1. L(G) L(parser)

2. error detection

3. usage is limited

4. They are easy to analyse manually Example:

Grammar: E EAE|(E)|-E/id

A +|-|*|/|

Input string: id+id*id

The operator precedence relations are:

AEC, Dept. of IT Page 59

 Id + * $

Id .> .> .>

+ <. .> <. .>

* <. .> .> .>

$ <. <. <.

Solution: This is not operator grammar, so first reduce it to operator grammar form, by

eliminating adjacent non-terminals.

Operator grammar is:

E E+E|E-E|E*E|E/E|E E|(E)|-E|id

The input string with precedence relations interested is:

$<.id.> + <.id.> * <.id.> $

Scan the string the from left end until first .> is encounted.

$<.id.>+<.id.>*<.id.<$

This occurs between the first id and +.

Scan backwards (to the left) over any until a <. Is encounted. We scan backwards to $.

$<.id.>+<.id.>*<.id.>$

Everything to the left of the first .> and to the right of <. Is called handle. Here, the handle is the first

id.

Then reduce id to E. At this point we have: E+id*id

By repeating the process and proceding in the same way: $+<.id.>*<.id.>$

substitute E id,

After reducing the other id to E by the same process, we obtain the right-sentential form

E+E*E

Now, the 1/p string afte detecting the non-terminals sis:

 $+*$

AEC, Dept. of IT Page 60

Inserting the precedence relations, we get: $<.+<.*.>$

The left end of the handle lies between + and * and the right end between * and $. It indicates that, in

the right sentential form E+E*E, the handle is E*E.

Reducing by E E*E, we get:

E+E

Now the input string is: $<.+$

Again inserting the precedence relations, we get:

$<.+.>$

reducing by E E+E, we get,

$ $

and finally we are left with:

E

Hence accepted.

Input string Precedence relations Action

inserted

id+id*id $<.id.>+<.id.>*<.id.>$

E+id*id $+<.id.>*<.id.>$ E id

E+E*id $+*<.id.>$ E id

E+E*E $+*$

E+E*E $<.+<.*.>$ E E*E

E+E $<.+$

E+E $<.+.>$ E E+E

E $$ Accepted

AEC, Dept. of IT Page 61

5. LR PARSING INTRODUCTION:

The "L" is for left-to-right scanning of the input and the "R" is for constructing a

rightmost derivation in reverse.

5.2 WHY LR PARSING:

1. LR parsers can be constructed to recognize virtually all programming-language

constructs for which context-free grammars can be written.

2. The LR parsing method is the most general non-backtracking shift-reduce parsing

method known, yet it can be implemented as

efficiently as other shift-reduce methods.

3. The class of grammars that can be parsed using LR methods is a proper subset of the

class of grammars that can be parsed with predictive parsers.

4. An LR parser can detect a syntactic error as soon as it is possible to do so on a left-to-

right scan of the input.

The disadvantage is that it takes too much work to constuct an LR parser by hand for a typical

programming-language grammar. But there are lots of LR parser generators available to make this

task easy.

AEC, Dept. of IT Page 62

5.3 LR PARSERS:

LR(k) parsers are most general non-backtracking shift-reduce parsers. Two cases of interest are k=0

and k=1. LR(1) is of practical relevance

 stands -to- scan of input.

 stands for derivation (in

 stands for number of input symbols of look-a-head that are used in making parsing decisions.

When (K) is omitted, is assumed to be 1.

LR(1) parsers are table-driven, shift-reduce parsers that use a limited right context (1 token) for

handle recognition.

LR(1) parsers recognize languages that have an LR(1) grammar. A grammar is LR(1) if, given a

right-most derivation

S r0 r1 r2- - - rn-1 rn sentence.

We can isolate the handle of each right-sentential form ri and determine the production by which to

reduce, by scanning ri from left-to-right, going atmost 1 symbol beyond the right end of the handle of

ri.

Parser accepts input when stack contains only the start symbol and no remaining input symbol are

left.

LR(0) item: (no lookahead)

Grammar rule combined with a dot that indicates a position in its RHS.

Ex 1: SI .S$ S .x S .(L)

Ex-2: A XYZ generates 4LR(0) items

A .XYZ

A X.YZ

A XY.Z

A XYZ.

A .XYZ indicates that the parser is looking for a string that can be derived from XYZ.

AEC, Dept. of IT Page 63

STACK

Sm
LR

Parsing Program

Xm

Sm-1

Xm-1

goto Action

A XY.Z indicates that the parser has seen a string derived from XY and is looking for one

derivable from Z.

 LR(0) items play a key role in the SLR(1) table construction algorithm.

 LR(1) items play a key role in the LR(1) and LALR(1) table construction algorithms. LR

parsers have more information available than LL parsers when choosing a production:

* LR knows everything derived from RHS plus lookahead symbols.

* LL just knows lookahead symbols into derived from RHS.

Deterministic context free languages:

LR (1) languages

Preccdence

Languages LL

languages

5.4 LR PARSING ALGORITHM:

The schematic form of an LR parser is shown below:

INPUT a1

Out put

 ai an

AEC, Dept. of IT Page 64

It consists of an input, an output, a stack, a driver program, and a parsing table that has two parts:

action and goto.

The LR parser program determines Sm, the current state on the top of the stack, and ai, the current

input symbol. It then consults action [Sm, ai], which can have one of four values:

1. Shift S, where S is a state.

2. reduce by a grammar production A

3. accept and

4. error

The function goes to takes a state and grammar symbol as arguments and produces a state.

The goto function of a parsing table constructed from a grammar G using the SLR, canonical LR or

LALR method is the transition function of DFA that recognizes the viable prefixes of G. (Viable

prefixes of G are those prefixes of right-sentential forms that can appear on the stack of a shift-reduce

parser, because they do not extend past the right-most handle)

5.6 AUGMENTED GRAMMAR:

If G is a grammar with start symbol S, then GI, the augmented grammar for G with a new

start symbol SI and production SI S.

The purpose of this new start stating production is to indicate to the parser when it should stop

parsing and announce acceptance of the input i.e., acceptance occurs when and only when the parser

is about to reduce by SI S.

CONSTRUCTION OF SLR PARSING TABLE:

Example:

The given grammar is:

1. E E+T

2. E T

3. T T*F

4. T F

5. F (E)

6. F id Step I: The Augmented grammar is:

AEC, Dept. of IT Page 65

EI E

E E+T

E T

T T*F

T F

F (E)

F id

Step II: The collection of LR (0) items are:

I0: EI .E

E .E+T

E .T

T .T*F

T .F

F .(E)

F .id

Start with start symbol after since () there is E, start writing all productions of E.

Start productions

Start writing F productions

Goto (I0,E):

the

States have successor states formed by advancing the marker over the symbol it

preceeds. For state 1 there are successor states reached by advancing the masks over

E I E. -
symbols E,T,F,C or id. Consider, first, the

I1: reduced Item (RI)

E E.+T

Goto (I0,T):

I2: E T. - reduced Item (RI)

AEC, Dept. of IT Page 66

T T.*F

Goto (I0,F):

I2: E T. - reduced item (RI)

T T.*F

Goto (I0,C):

I4: F (.E)

E .E+T

E .T

T .T*F

T .F

F .(E)

F .id

 Precedes non-terminal start writing its corresponding production. Here first E then T after that

F.

Start writing F productions.

Goto (I0,id):

I5: F id. - reduced item.

E successor (I, state), it contains two items derived from state 1 and the closure operation adds no

more (since neither marker precedes a non-terminal). The state I2 is thus:

Goto (I1,+):

I6: E E+.T start writing T productions

T .T*F

T .F start writing F productions

F .(E)

F .id

AEC, Dept. of IT Page 67

Goto (I2,*):

I7: T T*.F start writing F productions

F .(E)

F .id

Goto (I4,E):

I8: F (E.)

E E.+T

Goto (I4,T):

I2: E T. these are same as I2.

T T.*F

Goto (I4,C):

I4: F (.E)

E .E+T

E .T

T .T*F

T .F

F .(E)

F .id

goto (I4,id):

I5: F id. - reduced item

Goto (I6,T):

I9: E E+T. - reduced item

AEC, Dept. of IT Page 68

T T.*F

Goto (I6,F):

I3: T F. - reduced item Goto (I6,C):

I4: F (.E)

E .E+T

E .T

T .T*F

T .F

F .(E)

F .id

Goto (I6,id):

I5: F id. reduced item.

Goto (I7,F):

I10: T T*F reduced item

Goto (I7,C):

I4: F (.E)

E .E+T

E .T

T .T*F

T .F

F .(E)

F .id

Goto (I7,id):

I5: F id. - reduced item

AEC, Dept. of IT Page 69

Goto (I8,)):

I11: F (E). reduced item

Goto (I8,+):

I11: F (E). reduced item

Goto (I8,+):

I6: E E+.T

T .T*F

T .F

F .(E)

F .id

Goto (I9,+):

I7: T T*.f

F .(E)

F .id

Step IV: Construction of Parse table:

Construction must proceed according to the algorithm 4.8

S shift items

R reduce items

Initially EI E. is in I1 so, I = 1.
Set action [I, $] to accept i.e., action [1, $] to Acc

Action Goto

State Id + * () $ E T F

I0 S5 S4 1 2 3

1 S6 Accept

2 r2 S7 R2 R2

AEC, Dept. of IT Page 70

3 R 4 R 4 R4 R4

4 S5 S4 3

5 R 6 R 6 R6 R6

6 S5 S4 3

7 S5 S4 10

8 S 6 S11

9 R1 S7 r1 r1

10 R3 R3 R3 R3

11 R5 R5 R5 R5

As there are no multiply defined entries, the grammar is SLR®.

STEP III Finding FOLLOW () set for all non-terminals.

Relevant production

FOLLOW (E) = {$} U FIRST (+T) U FIRST ()) E E/B + T/B

= {+,), $} F (E)

B

FOLLOW (T) = FOLLOW (E) U E T

FIRST (*F) U T T*F

FOLLOW (E) E E+T

B

= {+,*,),$}

FOLLOW (F) = FOLLOW (T)

= {*,*,),$}

Step V:

1. Consider I0:

1. The item F .(E) gives rise to goto (I0,C) = I4, then action [0,C] = shift 4

2. The item F .id gies rise goto (I0,id) = I4, then action [0,id] = shift 5

the other items in I0 yield no actions. Goto (I0,E) = I1 then goto [0,E] = 1

AEC, Dept. of IT Page 71

Goto (I0,T) = I2 then goto [0,T] = 2

Goto (I0,F) = I3 then goto [0,F] = 3

2. Consider I1:

1. The item EI E. is the reduced item, so I = 1 This gives rise to

action [1,$] to accept.

2. The item E E.+T gives rise to

goto (I1,+)=I6, then action [1,+] = shift 6.

3. Consider I2:

1. The item E T. is the reduced item, so take FOLLOW (E),

FOLLOW (E) = {+,),$}

The first item +, makes action [Z,+] = reduce E T. E T is production

rule no.2. So action [Z,+] = reduce 2.

The second item, makes action [Z,)] = reduce 2 The third item $, makes

action [Z,$] = reduce 2

2. The item T T.*F gives rise to

goto [I2,*]=I7, then action [Z,*] = shift 7.

4. Consider I3:

1. T F. is the reduced item, so take FOLLOW (T).

FOLLOW (T) = {+,*,),$}

So, make action [3,+] = reduce 4

Action [3,*] = reduce 4

Action [3,)] = reduce 4

AEC, Dept. of IT Page 72

Action [3,$] = reduce 4

In forming item sets a closure operation must be performed to ensure that whenever the marker in

an item of a set precedes a non-terminal, say E, then initial items must be included in the set for all

productions with E on the left hand side.

The first item set is formed by taking initial item for the start state and then performing the

closure operation, giving the item set;

We construct the action and goto as follows:

1. If there is a transition from state I to state J under the terminal symbol K, then set

action [I,k] to SJ.

2. If there is a transition under a non-terminal symbol a, say from state to

set goto [I,A] to SJ.

3. If state I contains a transition under $ set action [I,$] to accept.

4. If there is a reduce transition #p from state I, set action [I,k] to reduce #p for all

terminals k belonging to FOLLOW (A) where A is the subject to production #P.

If any entry is multiply defined then the grammar is not SLR(1). Blank entries are represented by

dash (-).

5. Consider I4 items:

The item F id gives rise to goto [I4,id] = I5 so,

Action (4,id) shift 5

The item F .E action (4,c) shift 4

The item goto (I4,F) I3, so goto [4,F] = 3

The item goto (I4,T) I2, so goto [4,F] = 2

The item goto (I4,E) I8, so goto [4,F] = 8

6. Consider I5 items:

F id. Is the reduced item, so take FOLLOW (F).

FOLLOW (F) = {+,*,),$}

AEC, Dept. of IT Page 73

F id is rule no.6 so reduce 6

Action (5,+) = reduce 6

Action (5,*) = reduce 6

Action (5,)) = reduce 6

Action (5,)) = reduce 6

Action (5,$) = reduce 6

7. Consider I6 items:

goto (I6,T) = I9, then goto [6,T] = 9 goto (I6,F) = I3, then

goto [6,F] = 3 goto (I6,C) = I4, then goto [6,C] = 4 goto

(I6,id) = I5, then goto [6,id] = 5

8. Consider I7 items:

1. goto (I7,F) = I10, then goto [7,F] = 10

2. goto (I7,C) = I4, then action [7,C] = shift 4

3. goto (I7,id) = I5, then goto [7,id] = shift 5

9. Consider I8 items:

1. goto (I8,)) = I11, then action [8,)] = shift 11

2. goto (I8,+) = I6, then action [8,+] = shift 6

10. Consider I9 items:

1. E E+T. is the reduced item, so take FOLLOW (E).

FOLLOW (E) = {+,),$}

E E+T is the production no.1., so

Action [9,+] = reduce 1

Action [9,)] = reduce 1

Action [9,$] = reduce 1

2. goto [I5,*] = I7, then acgtion [9,*] = shift 7.

AEC, Dept. of IT Page 74

11. Consider I10 items:

1. T T*F. is the reduced item, so take

FOLLOW (T) = {+,*,),$}

T T*F is production no.3., so

Action [10,+] = reduce 3

Action [10,*] = reduce 3

Action [10,)] = reduce 3

Action [10,$] = reduce 3

12. Consider I11 items:

1. F (E). is the reduced item, so take

FOLLOW (F) = {+,*,),$}

F (E) is production no.5., so

Action [11,+] = reduce 5

Action [11,*] = reduce 5

Action [11,)] = reduce 5

Action [11,$] = reduce 5

VI MOVES OF LR PARSER ON id*id+id:

 STACK INPUT ACTION

1. 0 id*id+id$ shift by S5

2. 0id5 *id+id$ sec 5 on *
 reduce by F id
 If A
 Pop 2*| | symbols.

=2*1=2 symbols.

Pop 2 symbols off the stack

State 0 is then exposed on F.

AEC, Dept. of IT Page 75

 Since goto of state 0 on F is

 3, F and 3 are pushed onto

 the stack

3. 0F3 *id+id$ reduce by T F

 pop 2 symbols push T. Since

 goto of state 0 on T is 2, T

 and 2, T and 2 are pushed

 onto the stack.

4. 0T2 *id+id$ shift by S7

5. 0T2*7 id+id$ shift by S5

6. 0T2*7id5 +id$ reduce by r6 i.e.

 F id

 Pop 2 symbols,

 Append F,

 Secn 7 on F, it is 10

7. 0T2*7F10 +id$ reduce by r3, i.e.,

 T T*F

 Pop 6 symbols, push T

 Sec 0 on T, it is 2

 Push 2 on stack.

8. 0T2 +id$ reduce by r2, i.e.,

 E T

 Pop two symbols,

 Push E

 See 0 on E. It 10 1

 Push 1 on stack

9. 0E1 +id$ shift by S6.

10. 0E1+6 id$ shift by S5

11. 0E1+6id5 $ reduce by r6 i.e.,

AEC, Dept. of IT Page 76

 F id

 Pop 2 symbols, push F, see 6
 on F

 It is 3, push 3

0E1+6F3 $ reduce by r4, i.e.,
 T F

 Pop2 symbols,
 Push T, see 6 on T
 It is 9, push 9.

0E1+6T9 $ reduce by r1, i.e.,
 E E+T

 Pop 6 symbols, push E
 See 0 on E, it is 1
 Push 1.

0E1 $ Accept

Procedure for Step-V

The parsing algorithm used for all LR methods uses a stack that contains alternatively state

numbers and symbols from the grammar and a list of input terminal symbols terminated by $. For

example:

AAbBcCdDeEf/uvwxyz$

Where, a f are state numbers

A E are grammar symbols (either terminal or non-terminals) u z are the terminal symbols of

the text still to be parsed. The parsing algorithm starts in state I0 with the configuration

AEC, Dept. of IT Page 77

0 / whole program upto $.

Repeatedly apply the following rules until either a syntactic error is found or the parse is complete.

(i) If action [f,4] = Si then transform aAbBcCdDeEf / uvwxyz$

to aAbBcCdDeEfui / vwxyz$ This is called a SHIFT transition

(ii) If action [f,4] = #P and production # P is of length 3, say, then it will be of the form P

 CDE where CDE exactly matches the top three symbols on the stack, and P is some non-

terminal, then assuming goto [C,P] = g

aAbBcCdDEfui / vwxyz$ will transform to

aAbBcPg / vwxyz$

The symbols in the stack corresponding to the right hand side of the production have been replaced

by the subject of the production and a new state chosen using the goto table. This is called a

REDUCE transition.

(iii) If action [f,u] = accept. Parsing is completed

(iv) If action [f,u] = - then the text parsed is syntactically in-correct.

Canonical LR(O) collection for a grammar can be constructed by augmented grammar and two

functions, closure and goto.

The closure operation:

If I is the set of items for a grammar G, then closure (I) is the set of items constructed from I by the

two rules:

i) initially, every item in I is added to closure (I).

5. CANONICAL LR PARSING:

Example:

 S CC

C CC/d.

AEC, Dept. of IT Page 78

1. Number the grammar productions:

1. S CC

2. C CC

3. C d

2. The Augmented grammar is:

SI S

S CC

C CC

C d.

Constructing the sets of LR(1) items:

We begin with:

SI .S,$ begin with look-a-head (LAH) as $.

We match the item [SI .S,$] with the term [A .B ,a]
In the procedure closure, i.e.,

A = SI

 =

B = S

 = a = $

Function closure tells us to add [B .r,b] for each production B r and terminal b in FIRST (a).

Now r must be S CC, and since is and a is $, b may only be $. Thus,

AEC, Dept. of IT Page 79

S .CC,$

We continue to compute the closure by adding all items [C .r,b] for b in FIRST [C$] i.e., matching

[S .CC,$] against [A .B ,a] we have, A=S, = , B=C and a=$. FIRST (C$) = FIRST ©

FIRST© = {c,d} We add items:

C .cC,C

C cC,d

C .d,c

C .d,d

None of the new items have a non-terminal immediately to the right of the dot, so we have completed

our first set of LR(1) items. The initial I0 items are:

I0 : SI .S,$ S .CC,$ C .CC,c/d C .d.c/d

Now we start computing goto (I0,X) for various non-terminals i.e., Goto (I0,S):

I1 : SI S.,$ reduced item.

Goto (I0,C

I2 : S C.C, $

C .cC,$

C .d,$

Goto (I0,C :

I2 : C c.C,c/d
 C .cC,c/d
 C .d,c/d

AEC, Dept. of IT Page 80

Goto (I0,d)

I4 C d., c/d reduced item.

Goto (I2,C) I5

 S CC.,$ reduced item.

Goto (I2,C) I6

 C c.C,$

 C .cC,$

 C .d,$

Goto (I2,d) I7

 C d.,$ reduced item.

Goto (I3,C) I8

 C cC.,c/d reduced item.

Goto (I3,C) I3

 C c.C, c/d

 C .cC,c/d

 C .d,c/d

Goto (I3,d) I4

 C d.,c/d. reduced item.

Goto (I6,C) I9

 C cC.,$ reduced item.

Goto (I6,C) I6

 C c.C,$

 C ,cC,$

 C .d,$

Goto (I6,d) I7

C d.,$ reduced item.

All are completely reduced. So now we construct the canonical LR(1) parsing table

Here there is no neet to find FOLLOW () set, as we have already taken look-a-head for each

set of productions while constructing the states.

AEC, Dept. of IT Page 81

Constructing LR(1) Parsing table:

 Action goto

State C D $ S C

I0 S3 S4 1 2

1 Accept

2 S6 S7 5

3 S3 S4 8

4 R3 R3

5 R1

6 S6 S7 9

7 R3

8 R2 R2

9 R2

1. Consider I0 items:

The item S .S.$ gives rise to goto [I0,S] = I1 so goto [0,s] = 1.

The item S .CC, $ gives rise to goto [I0,C] = I2 so goto [0,C] = 2.

The item C .cC, c/d gives rise to goto [I0,C] = I3 so goto [0,C] = shift 3

The item C .d, c/d gives rise to goto [I0,d] = I4 so goto [0,d] = shift 4

2. Consider I0 items:

The item SI S.,$ is in I1, then set action [1,$] = accept

3. Consider I2 items:

The item S C.C,$ gives rise to goto [I2,C] = I5. so goto [2,C] = 5

The item C .cC, $ gives rise to goto [I2,C] = I6. so action [0,C] = shift The item C .d,$ gives rise

to goto [I2,d] = I7. so action [2,d] = shift 7

4. Consider I3 items:

The item C .cC, c/d gives rise to goto [I3,C] = I8. so goto [3,C] = 8

The item C .cC, c/d gives rise to goto [I3,C] = I3. so action [3,C] = shift 3. The item C .d, c/d

gives rise to goto [I3,d] = I4. so action [3,d] = shift 4.

AEC, Dept. of IT Page 82

5. Consider I4 items:

The item C .d, c/d is the reduced item, it is in I4 so set action [4,c/d] to reduce c d. (production

rule no.3)

6. Consider I5 items:

The item S CC.,$ is the reduced item, it is in I5 so set action [5,$] to S CC (production rule no.1)

7. Consider I6 items:

The item C c.C,$ gives rise to goto [I6 ,C] = I9. so goto [6,C] = 9

The item C .cC,$ gives rise to goto [I6 ,C] = I6. so action [6,C] = shift 6

The item C .d,$ gives rise to goto [I6 ,d] = I7. so action [6,d] = shift 7

8. Consider I7 items:

The item C d., $ is the reduced item, it is in I7.

So set action [7,$] to reduce C d (production no.3)

9. Consider I8 items:

The item C CC.c/d in the reduced item, It is in Is, so set action[8,c/d] to reduce C cd

(production rale no .2)

10. Consider I9 items:

The item C cC, $ is the reduced item, It is in I9, so set action [9,$] to reduce C cC

(Production rale no.2)

If the Parsing action table has no multiply defined entries, then the given grammar is called as

LR(1) grammar

6.1 LALR PARSING:

Example:

1. Construct C={I0,I1,............. ,In} The collection of sets of LR(1) items

AEC, Dept. of IT Page 83

2. For each core present among the set of LR (1) items, find all sets having that core, and

replace there sets by their Union# (clus them into a single term)

I0 same as previous

I1

I2

I36 Clubbing item I3 and I6 into one I36 item.

C cC,c/d/$

C cC,c/d/$

C d,c/d/$

I5 some as previous

I47 C d,c/d/$

I89 C cC, c/d/$

LALR Parsing table construction:

State

Action Goto

c d C

Io S36 S47 2

1 Accept

2 S36 S47 5

36 S36 S47 89

47 r3 r3

5 r1

89 r2 r2 r2

